- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Blázquez, Miguel Angel (1)
-
Botto, Javier Francisco (1)
-
Burko, Yogev (1)
-
Cascales, Jimena (1)
-
Chiriotto, Tai Sabrina (1)
-
Chory, Joanne (1)
-
Franco‐Zorrilla, José_Manuel (1)
-
García‐Mina, José_M (1)
-
Garnica, María (1)
-
González‐Serrano, Sara (1)
-
Gómez-Ocampo, Gabriel (1)
-
Hernández, Luis_Eduardo (1)
-
Hernández-García, Jorge (1)
-
Leyva, Antonio (1)
-
Li, Zheng (1)
-
Navarro, Cristina (1)
-
Navarro, Micaela_Andrea (1)
-
Pruneda-Paz, José Luis (1)
-
Pruneda‐Paz, José (1)
-
Saura-Sánchez, Maite (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shade avoidance syndrome (SAS) is a strategy of major adaptive significance and typically includes elongation of the stem and petiole, leaf hyponasty, reduced branching and phototropic orientation of the plant shoot toward canopy gaps. Both cryptochrome 1 and phytochrome B (phyB) are the major photoreceptors that sense the reduction in the blue light fluence rate and the low red:far-red ratio, respectively, and both light signals are associated with plant density and the resource reallocation when SAS responses are triggered. The B-box (BBX)-containing zinc finger transcription factor BBX24 has been implicated in the SAS as a regulator of DELLA activity, but this interaction does not explain all the observed BBX24-dependent regulation in shade light. Here, through a combination of transcriptional meta-analysis and large-scale identification of BBX24-interacting transcription factors, we found that JAZ3, a jasmonic acid signaling component, is a direct target of BBX24. Furthermore, we demonstrated that joint loss of BBX24 and JAZ3 function causes insensitivity to DELLA accumulation, and the defective shade-induced elongation in this mutant is rescued by loss of DELLA or phyB function. Therefore, we propose that JAZ3 is part of the regulatory network that controls the plant growth in response to shade, through a mechanism in which BBX24 and JAZ3 jointly regulate DELLA activity. Our results provide new insights into the participation of BBX24 and JA signaling in the hypocotyl shade avoidance response in Arabidopsis.more » « less
-
Navarro, Micaela_Andrea; Navarro, Cristina; Hernández, Luis_Eduardo; Garnica, María; Franco‐Zorrilla, José_Manuel; Burko, Yogev; González‐Serrano, Sara; García‐Mina, José_M; Pruneda‐Paz, José; Chory, Joanne; et al (, New Phytologist)Summary Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic‐tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid.Here, we conducted a high‐throughput yeast one‐hybrid assay using as baits the promoter region from the arsenic‐inducible genesARQ1andASK18fromArabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response.We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response.gl2andanl2mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in thegl2mutant unveils potential regulators of arsenic tolerance.These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid.more » « less
An official website of the United States government
